Hadoop入门(三):Sqoop和Hive的使用

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://daichen.blog.csdn.net/article/details/9069871

 

1安装Hive

1.1下载解压

wget http://mirrors.cnnic.cn/apache/hive/stable/hive-0.10.0.tar.gz

tar xzvfhive-0.10.0.tar.gz

1.2配置环境变量

exportHIVE_HOME=/usr/local/src/hive-0.10.0

export PATH=$HIVE_HOME/bin:$PATH

1.3建立Hive仓库目录

hadoop fs -mkdir/tmp

hadoop fs -mkdir/user/hive/warehouse

hadoop fs -chmodg+w /tmp

hadoop fs -chmodg+w /user/hive/warehouse


1.4启动命令行

通过hive命令进入命令行,操作与MySQL的命令行类似:



2安装Sqoop

2.1下载解压

下载适合Hadoop 0.20版本的Sqoop:

wget http://mirrors.cnnic.cn/apache/sqoop/1.4.3/sqoop-1.4.3.bin__hadoop-0.20.tar.gz

tar -xvf sqoop-1.4.3.bin__hadoop-0.20.tar.gz

2.2配置环境变量

export SQOOP_HOME=/usr/local/src/sqoop-1.4.3.bin__hadoop-0.20

export PATH=$SQOOP_HOME/bin:$PATH

export HADOOP_COMMON_HOME=/home/admin/hadoop-0.20.2

export HADOOP_MAPRED_HOME=/home/admin/hadoop-0.20.2


3用Sqoop导入数据到HIVE

3.1导入HDFS

我们从MySQL数据库中导入一张表的数据来测试一下Sqoop是否配置成功。首先上传mysql-connector-java-5.1.23.jar到sqoop的lib文件夹下,然后在sqoop/bin下执行下列命令:

sqoop import--connect jdbc:mysql://ip/database --table tb1 --username user -P

===============================================================================

Warning: /usr/lib/hbase does not exist!HBase imports will fail.

Please set $HBASE_HOME to the root of yourHBase installation.

Enter password:

13/06/07 16:51:46 INFOmanager.MySQLManager: Preparing to use a MySQL streaming resultset.

13/06/07 16:51:46 INFO tool.CodeGenTool: Beginning codegeneration

13/06/07 16:51:48 INFO manager.SqlManager:Executing SQL statement: SELECT t.* FROM `tb1` AS t LIMIT 1

13/06/07 16:51:48 INFO manager.SqlManager:Executing SQL statement: SELECT t.* FROM `tb1` AS t LIMIT 1

13/06/07 16:51:48 INFOorm.CompilationManager: HADOOP_MAPRED_HOME is /home/admin/hadoop-0.20.2

13/06/07 16:51:48 INFOorm.CompilationManager: Found hadoop core jar at:/home/admin/hadoop-0.20.2/hadoop-0.20.2-core.jar

Note:/tmp/sqoop-root/compile/44c4b6c5ac57de04b487eb90633ac33e/tb1.java uses oroverrides a deprecated API.

Note: Recompile with -Xlint:deprecation fordetails.

13/06/07 16:51:54 INFO orm.CompilationManager:Writing jar file:/tmp/sqoop-root/compile/44c4b6c5ac57de04b487eb90633ac33e/tb1.jar

13/06/07 16:51:54 WARNmanager.MySQLManager: It looks like you are importing from mysql.

13/06/07 16:51:54 WARNmanager.MySQLManager: This transfer can be faster! Use the --direct

13/06/07 16:51:54 WARNmanager.MySQLManager: option to exercise a MySQL-specific fast path.

13/06/07 16:51:54 INFOmanager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)

13/06/07 16:51:54 INFO mapreduce.ImportJobBase:Beginning import of tb1

13/06/07 16:51:57 INFOdb.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM`tb1`

13/06/07 16:51:59 INFO mapred.JobClient:Running job: job_201306071651_0001

13/06/07 16:52:00 INFOmapred.JobClient:  map 0% reduce 0%

13/06/07 16:52:38 INFOmapred.JobClient:  map 50% reduce 0%

13/06/07 16:52:44 INFOmapred.JobClient:  map 100% reduce 0%

13/06/07 16:52:46 INFO mapred.JobClient:Job complete: job_201306071651_0001

13/06/07 16:52:46 INFO mapred.JobClient:Counters: 5

13/06/07 16:52:46 INFOmapred.JobClient:   Job Counters

13/06/07 16:52:46 INFOmapred.JobClient:     Launched map tasks=2

13/06/07 16:52:46 INFOmapred.JobClient:   FileSystemCounters

13/06/07 16:52:46 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=212

13/06/07 16:52:46 INFOmapred.JobClient:   Map-Reduce Framework

13/06/07 16:52:46 INFOmapred.JobClient:     Map input records=2

13/06/07 16:52:46 INFOmapred.JobClient:     Spilled Records=0

13/06/07 16:52:46 INFO mapred.JobClient:     Map output records=2

13/06/07 16:52:46 INFOmapreduce.ImportJobBase: Transferred 212 bytes in 51.383 seconds (4.1259bytes/sec)

13/06/07 16:52:46 INFOmapreduce.ImportJobBase: Retrieved 2 records.

===============================================================================

 

数据文件默认被导入到当前用户文件夹下表名对应的文件夹了:

 

Sqoop默认会同时启动四个Map任务来加速数据导入,可以通过-m 1命令来强制只启动一个map任务,这样就只会在HDFS中生成一个数据文件了。因为tb1表目前就两条数据,所以一共产生两个文件,查看下生成的文件内容:


3.2创建Hive表

首先在hive命令行中创建tb1表。注意hive支持的数据类型有限,并且一定要设置表的分隔符为逗号,否则Hive默认分隔符为Ctrl+A。

CREATE TABLE tb1(

  id int,

 ......

) row format delimited fields terminated by ‘,’;

 

也可以通过下面的命令让Sqoop根据MySQL表结构自动创建出Hive表:

sqoop create-hive-table --connect jdbc:mysql://ip/database --table tb1 --hive-table tb1 --username user -P

3.3导入Hive

现在导入HDFS中的文件到Hive,注意Hive从HDFS导入数据后,会将HDFS中的文件/user/root/tb1移动到/user/hive/tb1:

         LOADDATA INPATH '/user/root/tb1/part-m-*' OVERWRITE INTO TABLE tb1

3.4一条强大的命令

上面的从MySQL导出数据到HDFS、创建Hive表格、导入数据到Hive三步,可以直接用一条Sqoop命令完成:

sqoop import--connect jdbc:mysql://ip/database --table tb1 --username user -P  --hive-import

 

4用HiveQL做分析

待续...... 


参考资料

Hive安装

https://cwiki.apache.org/confluence/display/Hive/GettingStarted

 

http://sqoop.apache.org/docs/1.99.1/Installation.html

 

展开阅读全文

没有更多推荐了,返回首页